Inhibition of mitochondrial complex II affects dopamine metabolism and decreases its uptake into striatal synaptosomes.
نویسندگان
چکیده
The mitochondrial toxin, 3-nitropropionic acid (3-NP), is a specific inhibitor of succinate dehydrogenase, complex II in the mitochondrial respiratory chain. The aim of our study was to determine the relationship between inhibition of mitochondrial complex II and dopamine (DA) metabolism and its transport into rat striatal synaptosomes after exposure to 3-NP. The study was carried out using spectrophotometric, radiochemical and HPLC methods. Our data showed that inhibition of succinate dehydrogenase by intraperitoneal (i.p.) injection of 3-NP (cumulated dose 100 mg/kg in 4 days) significantly affected DA metabolism, leading to the accumulation of its metabolites, 3,4-dihydroxylphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the rat striatum. These experimental conditions had no effect on free radical dependent lipid peroxidation in the brain. In vitro experiments revealed that DA and DOPAC significantly decrease lipid peroxidation in the brain homogenate. Moreover, 3-NP significantly inhibited [3H]DA uptake into striatal synaptosomes by specific dopamine transporter (DAT). The scavengers of superoxide radical (O2-) Tempol and Trolox had no effect on DAT function, but the nitric oxide synthase (NOS) inhibitor N w-nitro-L-arginine (100 microM) prevented 3-NP-evoked DAT down-regulation. In summary, our results indicate that inhibition of mitochondrial complex II by 3-NP enhances DA degradation and decreases its uptake into synaptosomes. It is suggested that NO and energy failure are responsible for alteration of the dopaminergic system in the striatum.
منابع مشابه
EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.
The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملDopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism.
The primary mechanism for clearance of extracellular dopamine (DA) is uptake mediated by the dopamine transporter (DAT), which is governed, in part, by the number of functional DATs on the cell surface. Previous studies have shown that amphetamine (AMPH) decreases DAT cell surface expression, whereas insulin reverses this effect through the action of phosphatidylinositol 3-kinase (PI3K). Theref...
متن کاملRapid and reversible effects of methamphetamine on dopamine transporters.
Reactive oxygen species decrease dopamine transporter (DAT) function in vitro. Because of this, and the finding that METH administration causes oxygen radical formation in vivo, the effects of METH administration on DAT activity in rat striatum were investigated. A single METH injection caused a dose-dependent (0-15 mg/kg) decrease in [3H]dopamine uptake into striatal synaptosomes prepared 1 h ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Folia neuropathologica
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2006